
2-Chord Halved
Gennaro Cordasco and Alessandra Sala
IsisLab–Dipartimento di Informatica ed Applicazioni

Universit̀a di Salerno, 84081 Baronissi (Salerno), Italy
E-mail: {sala,cordasco }@dia.unisa.it

Abstract— We present 2-Chord Halved, a distributed peer-to-
peer lookup protocol. This protocol, as Chord [24], uses consistent
hashing [5], [7] to assign keys to nodes. Consistent hashing
tends to balance load, since each node receives roughly the same
number of keys, and requires relatively little movement of keys
when nodes join and leave the system.
Our proposal exhibit the following advantages:
i) We show astabilizationprocedure that eliminates thefix.finger
procedure of Chord protocol. Our strategy allows to inform
each node on the ring that is interested to a topological change.
Fix.finger in Chord costs O(log2 N) messages when it is ran on
all finger table entries even if the finger table is up to date,
contrariwise our stabilization procedure, that has the same cost,
is ran only if there are join or leave operations and only on the
interested nodes.
ii) 2-Chord Halved is a dynamic protocol that deals with nodes
joining the system and with nodes that fail or leave voluntarily.
We present a new strategy to implement the join/leave operations
using the predecessor’s finger table of joined node and exploiting
the fingers of predecessor as start point searching new fingers.
This procedure costsO(log N log log N) w.h.p., contrariwise to
Chord within join/leave operation cost O(log2 N).
iii) We show a new routing strategy that has a moderate
improvement on average path length.
The improvements are obtained with no harm to the operational
efficiency (e.g. stability, scalability, fault–tolerance, node conges-
tion) of the Chord systems.

I. I NTRODUCTION

Peer-to-peer (P2P) networks is a class of networks in which
each workstation has equivalent capabilities and responsibility
and communications are potentially symmetric. A review of
the features of the recent peer-to-peer applications yield a
long list: redundant storage, permanence, selection of nearby
servers, anonymity, search, authentication and hierarchical
naming.

Despite of this rich set of features, the core operation
in most peer-to-peer systems is efficient location of data
items. Many are the recent P2P applications that are available.
Among the most popular, without any doubt, are the file
sharing systems and, in general, sharing other resources such
as Napster [8], Gnutella [9], Kazaa and Freenet [10].

Scalability has been recognized as the central challenge in
designing such systems. To obtain a scalable system, several
P2P systems are based on distributed hashing table (DHT)
schemes [1], [12], [14], [24], [25]. In Distributed Hash Table
(DHT) schemes, data as well as nodes are associated with a
key and each nodes in the system is responsible for storing a
certain range of keys. Each node stores data that correspond to
a certain portion of the key space, and uses a routing scheme

to forward the request for data whose key does not belong to
its key space to the appropriate next-hop node. The mapping
table is not stored explicitly anywhere. Instead, hosts configure
themselves into a structured network such that mapping table
lookups require a small number of hops.

Designing a practical scheme along these lines is challeng-
ing because of the following desiderata:

Scalability: The protocol should work for a range of net-
works of arbitrary size.

Stability: The protocol should work for hosts with arbitrary
arrival and departure times, typically with small lifetimes.

Performance: The protocol should provide low latency for
hash lookups and low maintenance cost in the presence of
frequent joins and leaves.

Flexibility: The protocol should impose few restrictions on
the remainder of the system. It should allow for smooth trade-
offs between performance and state management complexity.

Simplicity: The protocol should be easy to understand, code,
debug and deploy.

In the following we will refer to all systems that are defined
on Chord asChord-likesystems, i.e. systems that work on ring,
use a consistent hash and perform join/leave operations like
Chord. In this category we can find Kademlia [3], F-Chord [4],
Koorde [11], Symphony [19], randomized-Chord [21], [22],
Viceroy [12].

We propose a Chord-like protocol called2-Chord Halved.
This protocol proposes a new stabilization procedure that
does not need any (costly) periodic update (such as Chord
fix.finger), but, with a modified routing strategy, keeps Chord
performance on max path length and allows a moderate
improvement on average path length.

Moreover, we present a new join procedure on2-Chord
Halvedthat, w.h.p.1, takesO(log N log log N) messages (with
respect toO(log2 N) in Chord). 2-Chord Halvedallows to
preserve consistent information between fingers of nodes when
there are topological changes on the ring.

A. Related work

The measures to optimize to obtain better performance for
DHTs include:

Degree: the number of neighbors with which a node must
maintain continuous contact;

Hop count: the number of hops needed to get a message
from any source to any destination;

1With High Probability, namely with probability smaller than1
N

, whereN
is the number of nodes in the network.



The degree of fault tolerance: what fraction of the nodes can
fail without eliminating data or preventing successful routing;

The maintenance overhead: how often messages are passed
between nodes and neighbors to maintain coherence as nodes
join and depart;

The degree of load balance: how evenly keys are distributed
among the nodes, and how much load each node experiences
as an intermediate node for other routes.

There are other measures for DHTs, such as delay (i.e.,
proximity routing) and resilience against malicious nodes.

The Chord system was introduced in [24] to allow efficient
lookup in a Distributed Hash Table. Chord provides fast
distributed computation of a hash function mapping keys to
nodes responsible for them. Chord assigns keys to nodes
with consistent hashing[5], [7], which has several desirable
proprieties. The consistent hash function assigns each node
and key anm-bit identifier using “SHA-1” [6] as a base hash
function. Consistent hashing assigns keys to nodes as follows.
Identifiers are ordered on an identifier ring modulo2m, labeled
from 0 to 2m − 1. Key k is assigned to first node, called
successor(k), whose identifier is equal to or followsk in the
identifier space (i.e. the first node clockwise fromk).

To accelerate lookups, Chord maintains logarithmic routing
information. Each nodex maintains a routing table with up to
m entries called thefinger table. The ith entry2 in the table at
nodex contains the identity of the first nodes that succeedsx
by at least2i−1 on the identifier circle, where1 ≤ i ≤ m. We
denote byn.finger[i] the ith finger of nodex. The degree and
the diameter arem, the average path length is(m

2 ). Routing is
greedy, never overshooting the destination. When the number
of nodes on the ring areN with N << 2m then by using
logarithmic size routing tables in each node, Chord allows to
find in O(log N) routing hops the node of a P2P system that
is responsible for a given key.

Efficient routing in Chord is easy due to the fact that Chord
is uniform: x is connected toy ⇔ x + z is connectedy + z.
Uniformity is a crucial requirement, since it makes any system
a good candidate for real implementations: besides simplicity
in the implementation it also offers an optimal greedy routing
algorithm without node congestion [26].

Adding or removing a node is accomplished at a cost
of O(log2 N) messages, in fact each node periodically calls
fix.fingersto make sure its finger table entries are correct; this
is how new nodes initialize their finger tables, and it is how
existing nodes incorporate new nodes into their finger tables.
By way of explanation eachfix.fingercostO(log N) messages
and we needlog N round offix.fingerto initialize all the finger
table.

Tapestry [25] adapted this scheme to a dynamic network
for use in a global data storage system. Pastry [1] is another
scheme along the same lines where a node forwards a query to
a neighbor with the longest matching prefix. In both Tapestry
and Pastry, the number of bits per digit b is a configurable
parameter that remains fixed at run-time.

2All the arithmetic operation on the Chord’s ring are donemod 2m.

CAN [14] embeds the key-space into a torus withd di-
mensions by splitting the key intod variable-length digits. A
node forwards a query to the neighbor that takes it closer to
the key. Nodes haveO(d) neighbors and routing latency is
O(dN1/N ). The number of dimensions d is fixed in CAN. If
the final network size can be estimated, then d could be made
O(log N), resulting inO(log N) routing latency andO(log N)
neighbors.

Viceroy [12] is the first proposal that providesO(log N)
routing latency with only a constant number of links. Like
Chord, nodes are placed along a circle. A node additionally
belongs to one out of approximatelyO(log N) concentric
rings lying one above the other. These rings correspond to
layers in Butterfly networks. A node maintains connections
with two neighbors each along the two rings it belongs to. It
also maintains two connections to a pair of nodes in a lower
ring and one connection with a node in the ring above. Routing
requiresO(log N) hops on average.

Another important step toward protocols P2P with higher
performance came from Milgram’s idea. Thesmall world
phenomenonwas discovered by Milgram [16] in a celebrated
experiment that demonstrated that pairs of people in a society
were connected by short chains of acquaintances. Milgram
also discovered that people were actually able to route letters
to unknown persons in a few hops by forwarding them through
acquaintances. To model the small world phenomenon, Klein-
berg [17] recently constructed a two dimensional grid where
every node maintains four links to each of its closest neighbors
and onelong-distancelink to a node chosen from a harmonic
probability distribution. In the resulting network, a message
can be routed from any node to another by greedy routing
in O(log2 N) hops on average. Barriere et al. [18] studied
Kleinberg’s construction and proved its optimality under cer-
tain conditions. In [19] Manku et al. extend Kleinberg’s result
by showing that withk = O(1) links, the routing latency
diminishes toO(1/k log2 N) hops. They also shows how this
basic idea can be adapted and engineered into a practical
protocol for maintaining DHTs in a peer to peer network.

Others randomized P2P networks include randomized-
hypercubes [20], [21], randomized-Chord [21], [22], and a
combination of Kleinbergs construction with butterfly net-
works [23].

B. Our Result

We introduce here a Chord-like protocol called2-Chord
Halved. In Section III we proposes a new stabilization proce-
dure, that does not need any (expensive) periodic update (such
as Chordfix.finger), but, with a modified routing strategy that
is shown in Section IV, keeps Chord performance on max
path length and allows a moderate improvement on average
path length.
Moreover, in Section V, we present a new join procedure on2-
Chord Halved, that takesO(log N log log N) messages w.h.p.
(with respect toO(log2 N) in Chord). Section VI concludes
the paper with some final remarks.



2-Chord Halvedallows to preserve consistent information
between fingers of nodes when there are topological changes
on the ring. The new stabilization procedure acquaints each
node on the ring that is interested to a topological change.
Stabilization is ran, in2-Chord Halved, only when there
is a join or leave operation and only on interested nodes,
contrariwise to Chord that needs periodic update on all nodes.
The idea is to use the fingers of predecessor’s node that has
joined or has leaved the network to stabilize the network. This
strategy eliminates Chord’sfix.finger that performs the same
utility but with higher cost. Indeed, thefix.fingerprocedure is
ran on periodic interval time and for each time, on a certain
amount of finger table entries. Thefix.finger procedure costs
O(log2 N) when it is ran on all finger table entries even if
the finger table is up to date, contrariwise our stabilization
procedure, that have the same cost, is ran only if there are
join or leave operations and only on the interested node.

2-Chord Halveddefines a new finger table where the fingers
are nodes that have a distance equal to even powers of two, so,
the routing algorithm can profit by edges in both directions.
In particular, whenm is odd, we can exhibit a moderate
improvement, on the average path length.

We present a new strategy of routing which implements the
idea to use both clockwise fingers and anticlockwise fingers
in the routing path. We use a tool provided by Manku et al.
[2] that solves our routing problem (i.e. using edges in both
directions on ring but having only fingers with even power of
two), without paying overhead, i.e. the longest path has length
m and the average path length is less than3 or equal tom

2 .
The last part of this paper deals with the join operation and

how it can be improved. When a node wants to be connected
to the system, it computes its “finger table”, and, only then,
it can take part to the routing algorithm. In Chord [24], when
a node want to be connected to the system, it must initialize
its finger tables. The cost of the initialization isO(log2 N)
because thefix.fingerprocedure is executed for all the entries
of the finger table.

We present a new strategy to implement the join operation
that costsO(log N log log N), w.h.p., using the idea to take
advantage from predecessor’s finger table. With high prob-
ability, the number of nodes, in the network, that must be
found to construct the “finger table” isO(log N), and everyone
takesO(log log N) steps. We want to stress that the new join
procedure does not add any overhead, and that the strategy is
adaptable for all Chord-like uniforms protocol, such asChord
[24], F-Chord [4] and in general for all possible uniform
protocols on a ring.

II. PRELIMINARY RESULTS

2-Chord Halvedholds a setN of nodes lying on a ring of
2m identifier (labeled from0 to 2m − 1 in clockwise order).
Each nodex, has anm bit ID and is connected with its
predecessorp(x) and its successor s(x) on the ring.

3In particular if m is odd the average path length of our scheme is less
than m

2
.

Let x and y two nodes we denote byδ(x, y) be the
clockwise distance betweenx and y on the ring, instead, let
d(x, y) be the shortest path to go fromx to y. Due the fact
that 2-Chord Halvedhas front and back fingers, we obtain a
symmetricsystem, where it is easy to show that the follow is
true:

d(x, y) = d(y, x)

Let A be the event that the distance between two generic
consecutive nodes is almostα = 2m log N

N . The first theorem
bounds from above the probability of the eventA occurs.

Theorem 1:With high probability, the maximum distance
between two generic consecutive nodes isα = 2m log N

N where
the number of nodes alive isN < 2m, namely

Pr[∃x s.t. δ(x, s(x)) > α] <
1
N

.

Proof: Sincex ands(x) are two consecutive nodes then
betweenx ands(x) there are no other nodes lying in a range
2m − δ(x, s(x)). Thus

Pr[∃x s.t. δ(x, s(x))>α]
= Pr[there areN nodes in2m−α ID]

=
N−1∏
i=0

2m − α− i

2m
<

(
N − log N

N

)N

<
1
N

Let B be the event that in a rangeα the number of nodes is
at most4 log N . Now we want to upper bound the probability
of eventB given that eventA is holds true.

Theorem 2:With high probability, the maximum number
of nodes that lie in a range of sizeα = 2m log N

N , knowing
that in a genericα range there are no nodes, is4 log N , thus
Pr(B/A) < 1

N where the number of nodes alive isN < 2m.
Proof: We consider a generic intervalI of size α. Let

Xi be an independent variable such that

Xi =
{

1, if the ith node belongs toI
0, otherwise

so letpi = Pr[Xi = 1] = α
2m−α = log N

N−log N .

Let X =
∑N

i=1 Xi andµ=E[X]=E
[∑N

i=1 Xi

]
= N log N

N−log N .

According toChernoff Bound[13] we can show the follow:
Let ρ = 4N−log N

N − 1 we have:

Pr[X > 4 log N ] = Pr[X > (1 + ρ)µ]

<

(
eρ

(1 + ρ)(1+ρ)

)µ

=

 e4 N−log N
N −1(

4N−log N
N

)(4 N−log N
N )


N log N

N−log N

<

(
e

4N−log N
N

)4 log N

<
1
N

.

It is easy to show that:



Corollary 1: Pr(A ∩ B) < 1
N2 , namely given an empty

interval of sizeα = 2m log N
N for each generic interval of size

α there are at most4 log N nodes w.h.p. where the number of
nodes alive isN < 2m.

Now we can consider that the maximum distance between
two consecutive node isα = 2m log N

N and the maximum
number of nodes within that distance are4 log N w.h.p.

The next theorem shows thatβ = 2m

N2 is the minimum
distance between two generic consecutive nodes on the ring.

Theorem 3:With high probability, the minimum distance
between two generic consecutive nodes isβ = 2m

N2 where the
number of nodes alive isN < 2m, namely

Pr[∃x s.t. δ(x, s(x)) < β] <
1
N

.

Proof: If x and s(x) are two consecutive nodes then
betweenx ands(x) there are no other nodes. Thus

Pr[∃x s.t. δ(x, s(x)) < β] = 1− Pr[∀x δ(x, s(x)) ≥ β]

= 1−
N−1∏
i=0

2m − β

2m

< 1−
(

1− 1
N2

)N

<
1
N

III. N EW STABILIZATION PROCEDURE IN2-Chord Halved

In this section we present the fingers of2-Chord Halved
and the new stabilization procedure. As is usually, also in2-
Chord Halved, the identifiers are ordered on anidentifier circle
modulo2m, and, the keyk is assigned to the first node whose
identifier is equal to or followsk in the identifier space. The
fingers in2-Chord Halvedarem like in Chord but the fingers,
into new protocol, point a different nodes than Chord. In fact
2-Chord Halveduses only fingers with even power of two
index but in both directions on the ring.

Each nodex maintains a routing table with upm entries as
follows:

• Front finger

x.finger[i] = (x + 22i) ∀ 0 ≤ i <
⌈m

2

⌉
• Back finger

x.finger[i] = (x− 22i) ∀ 0 ≤ i <
⌊m

2

⌋
After we show the newstabilizationprocedure that elimi-

nates thefix.fingerprocedure of Chord protocol. This strategy
allows to inform each node on the ring that is interested
to a topological change. Stabilization is always ran when
there is a join or leave operation. If there is a join or leave
operation our scheme is able to identify and inform groups
of nodes that will have some fingers uncorrect. We propose
a strategy to recognize this groups of nodes and, so, our
system can change only those fingers of the nodes that need

N0

N16

N8

N32

N46

N4

N1

N54

N63
N60

Fig. 1. 2-Chord Halvedwith m = 6.

to change own values. In particular everyone of this groups of
nodes have only one finger uncorrect and, so, to estimate the
complexity of this procedure we need to know the number of
nodes that are lying into those groups and we show that this
number isO(log2 N). We need to inform all this nodes into
stabilization procedure, and so, the complexity of messages of
this procedure isO(log2 N). The proposed improvement with
2-Chord Halvedis to offer a dynamic network that fit oneself
efficiently to joined or leaved nodes without allow inconsistent
information of routing.

A. Definitions and theorems

Let x be a generic nodes on the ring, let y=s(x) and let
0 ≤ j <

⌈
m
2

⌉
, we denote byI+

j (x, y) (resp. I−j (x, y))
the interval

]
x− 22j , y − 22j

]
(resp.

]
x + 22j , y + 22j

]
), as

shown in figure 2.

Fig. 2. In figure has been identifiedI+
j (x, y) and I−j (x, y) with

j=
⌊

m
2

⌋
−1, whenmiseven.

It is easy to see that for each nodek belonging toI+
j (x, y)

(risp.I−j (x, y)) thejth front (risp. back) finger ofk belongs to
]x, y] i.e., for each nodek ∈ I+

j (x, y) ⇒ x < k+22j ≤ y and
for eachk ∈ I−j (x, y) ⇒ x < k − 22j ≤ y. We can observe
also that for eachj all the intervalsI−j (x, y), I+

j (x, y) and
]x,y] have the same size.



In order to evaluate the cost of the stabilization procedure
it is necessary to upper bound number of these interval and to
know the number of nodes that lie into them. We have analyzed
that the range of the considered interval don’t influence
asymptotically the number of groups that have fingers into
that interval. We prove that even if the distance, between two
consecutive nodes, is highest (i.e.α), or if the distance is
smallest (i.e.β) the number of groups, that have a finger in
]x, y], will be O(log N) w.h.p..

Lemma 1:The number of groups are inversely proportional
to distance betweenx and y (i.e between two consecutive
nodes) that isβ ≤ δ(x, y) ≤ α instead the number of nodes
into these groups are proportional to the greatness of these.

According to the Theorems 1 and 3, and according to the
Lemma 1 we use in the first part of following theorem the
minimal distance between two consecutive nodes, instead in
the second part the maximal distance, so we consider always
the worse case.

Theorem 4:Let x a generic node of the ring and y=s(x),
then on the ring there areO(log N) groups of nodes that have a
finger in ]x, y] and the total number of nodes in these intervals
is O(log2 N).

Proof: The proof is articulated into two part:

• We need to find the number of intervals likeI+
j (x, y)

and I−j (x, y). We start by considering an interval of
2m−1 ID (half ring) and each time we encounter a new
interval I+

j (x, y) we divide by4 the remaining interval
to encounterI+

j−1(x, y).
Thus letk be the distance betweenx andy, then the ring
will can be dividedi times until 2

m−1

4i ≥ k. Therefore the
number of times that we trace these groups is4i = 2m−1

k

thus: i = (m−1)
2 − log k

2 . In this case we use the minimal
distance to have an upper bound on the number of groups.
If k = β = 2m

N2 then i ≤ log N − 1/2.
By the same argument we can show that the number
of intervals on the latter part of the ring is at most
log N−1/2, so the total number of groups are2 log N−1.

• We need to find the number of nodes that there are into
previous groups. According to the Theorem 2 and Lemma
1 we say that for every interval of sizeα there are almost
4 log N nodes and, so, the total number of nodes into all
groups is at most8 log2 N − 4 log N .

Now we know the number of nodes to find during stabi-
lization procedure. Everyone of groups above identified have
a only one finger in]x, y] and so if between]x, y] there is a
topological change only that finger will be updated. Indeed,
all times that there is a operation of join or leave these
groups will be updated everyone changing only one particular
finger for all nodes into them. Interesting is that these groups
are easy to find consulting the predecessor’s finger table of
the joined/leaved node. The system is symmetric and so we
reaches the nodes that aim to]x, y] with front fingers using the
predecessor’s back fingers and vice versa. We remember that
in Chord [24], each node periodically calls, for every node,

the fix.fingerprocedure to make sure its finger table entries a
correct; the cost of this procedure is not influenced by some
join or leave event but is a continuous cost of Chord protocol.
Our stabilization procedure, on the contrary, paysO(log2 N)
only if there is a topological change and only on the interested
nodes.

IV. ROUTING IN 2-Chord Halved

Efficient routing in our scheme is easy due to the fact that
2-Chord Halved is uniform:x is connected toy ⇔ x + z is
connected toy + z.

In spite of the fact that our scheme is different by Chord
because it holds fingers in both directions, it offers the same
performance of Chord on max path length and a little bit better
on average path length.

Fig. 3. The state machine used by automata based algorithm that solves the
problem in definition 1, as presented in [2].

We present a new strategy of routing which implements the
idea to use both front fingers and back fingers in the routing
path. We use a tool provided by Manku et al. [2] that solves
the following problem:

Definition 1: Given b ≥ 1 and 0 < d < 2b , identify
(d′, d′′) such thatH(d′) + H(d′′) is minimal, subject to two
constraints4:

(i) either d = d′ − d′′ OR 2b − d = d′′ − d′ ;
(ii) both d′, d′′ ∈ [0, 2b).

We use a deterministic finite automata presented in [2] for
solving this problem. The routing algorithm runs the automata
in figure 3 for exactlyb steps, whereb is the number of bit to
represent the identifiers of network, and in this particular case
is the binary representation of distanced between the source
and the destination possibly padded with leading 0s to make
it exactly b bits long.

The binary representation of distance d is fed as input right–
to–left. Each transition produces a pair of bits as output, the
first bit for d′ and the second ford′′. All thin edges produce
<0, 0> as output. Thick edges(S0

1→ S1 and S2
0→ S3)

produce<0, 1> or <1, 0> as output [2]. Observe that the
traversal of a thick edge corresponds to exactly one 1-bit in
eitherd′ or d′′. We can see in [2] that if we use all the Chord’s
jumps in both directions the path length for a given distance

4WhereH(x) denotes the Hamming norm of x, i.e., the number of 1-bits
in x.



d is just the number of thick edges traversed by the automata
when processing theb-bit binary representation ofd. Now
we show how to run routing strategy into our protocol. We
use the automata above, calculating the distanced between
the source of the message and its destination, the distance
d is passed to the automata, and the path length of a route
produced for distanced is function of the number of thick
edges traversed when scanning the binary representation of
d right-to-left. Indeed, in2-Chord Halvedwe have not the
matching one to one between thick edges (i.e. the bits to one
into (d′, d′′)) and jumps, so, routing analysis for its is different
from [2]. The average path length is calculated as follows:

APL =

∑
x,y∈N d(x, y)

N2
=
∑

x∈N d(0, x)
N

where the second equality is due the fact that our scheme
is uniform. Then computing the average path length simply
requires us to run this automata on all possibleb-bit binary
strings and compute the average number of thick edges tra-
versed. We define a matrixM (2bXb), as shown in figure
4-c which contains for each row0 ≤ i < 2b the string
d′ OR d′′ obtained when the automata processed the binary
representation ofi, that is shown in figure 4-a.

Fig. 4. a) Identifies the matrix of all permutations ofb = 4 bit; b) the two
matrix represent the output of the automata, shown in figure 3, respectively
d′ andd′′; c) represent the matrixM, i.e. theOR of d′ andd′′. In the matrixes
above has been underlined the respective submatrix withb = 3, b = 2 andb = 1 bit.

In theorem 5 a recurrence is shown that defines the number
of one in the first column of the matrixd′ OR d′′.

Theorem 5:The number of bit to “1” in the first column
of the matrixM is given by:

f(b) = 2b−1 − f(b− 1),

where f(0)=0.
Proof: (Sketch) The relation is true considering that the

number of one is equal to the number of zero that there are
in the first column constructed withb − 1-bit, that is exactly
2b−1 − f(b− 1), because the automata produces a bit to one

only if previous computational has produced a bit to zero as
we can see looking at the automata’s state.

Lemma 2:Let f(b) andf(b+1) be the total number of bit
to “1” in the first column of the matrixM of all binary string
that the automata computes onb-bit and (b− 1)-bit, then:

f(b) + f(b + 1) = 2b

Proof: According to theorem 5, the proof is trivial by
induction onf(b).

We need to present another two property of the2-Chord
Halved to analyze the average path length.

Let E(b) (risp. D(b)) be the number of the bit “1” site in
even (risp. odd), right-to-left counting from0, column of the
matrix M.

Lemma 3:

E(b) =
{

2E(b− 1), if b is odd;
2E(b− 1) + f(b), if b is even

Proof: The result, stored into matrixM , of the automata
on all possibleb-bit binary strings is equal to result of two
times the automata on all possibleb−1-bit, only the last, right-
to-left, column is unknown; this is true because the automata
is deterministic and on same prefix computes the same result.
To know the total number of “1” in even positions (right-to-
left) of matrix is possible to double the value obtained on
(b− 1)-bit matrix and to addf(b) value only if b is even.

In the same mode, with only the exception thatD(b) counts
the odd positions of bit to one, it is easy to show that

Lemma 4:

D(b) =
{

2D(b− 1), if b is even;
2D(b− 1) + f(b), if b is odd.

Proof: According to lemma 3 remembering thatf(b) is
considered only ifb is odd.

Let s and t two node at distanced and let d̂ = d′ORd′′,
than the nodes can reach the nodet by performing a jump
(front or back) for each “1” in the binary representation ofd̂.
In particular for each “1” in positioni we need to perform
the jump (front or back)2i. Since in our system we do not
have the jumps2i with i odd, we simulate this jumps with
two jumps of size2i−1. Hence in order to value the average
path length we analyze the matrixM, counting the number of
“1” and double counting the “1” in even columns. Indeed, the
APL is valued as following:

APL =
∑

x∈N d(0, x)
N

=
D(m) + 2E(m)

2m
.

The follow theorem shows that in2-Chord Halved the
average path length is better than Chord ifm is odd.

Theorem 6:The average path length calculated withm-bit
is:

D(m) + 2E(m)
2m

≤ m

2
Proof: By induction:

Base:m = 1
D(1) = 1, E(1) = 0 then 1+0

2 = 1
2 = m

2 .



The inductive hypothesis is:D(i)+2E(i)
2i ≤ i

2 , ∀i < m .
Inductive step: we want to show that:

D(m) + 2E(m)
2m

≤ m

2
,

we have two cases:
1) if m is even :

D(m) + 2E(m)
2m

=
2D(m− 1) + 4E(m− 1) + 2f(m)

2m

=
4D(m− 2) + 2f(m− 1) + 8E(m− 2) + 2f(m)

2m

=
D(m− 2) + 2E(m− 2)

2m−2
+

f(m− 1) + f(m)
2m−1

≤ m− 2
2

+ 1 =
m

2
2) if m is odd:

D(m) + 2E(m)
2m

=
2D(m− 1) + 4E(m− 1) + f(m)

2m

<
m− 1

2
+

1
2

=
m

2
In the second case we want to stress the improvement that
the average path length of our system has with respect Chord.
Indeed, when the number of bits of the systemm is odd then
the average path length of2-Chord Halvedis less thanm/2.

V. NEW JOIN OPERATION IN2-Chord Halved

In order to ensure that2-Chord Halved is a dynamic
protocol, it needs to deal with nodes joining the system and
with nodes that fail or leave voluntarily. The operations that
implements this functionality are join and leave. When a node
wants to be connected to the system, it computes its “finger
table”, and, only then, it can take part to the routing algorithm.
In this section we want to present a new idea to implement
a join operation that holds better message complexity than
Chord. In Chord [24] indeed, when a node wants to be
connected to the system, it must initialize its finger tables.
The cost of the initialization isO(log2 N) w.h.p. because the
fix.fingerprocedure is executed for all entries of finger table.
In our scheme and in general for uniform systems, the boot-
strap of a nodex can easily be improved by using the finger
table ofx’s predecessor as a starting point to build an updated
finger table. In fact, theith finger ofx is efficiently obtained by
asking theith finger of x’s predecessor. This procedure costs
O(log N log log N) w.h.p., because with high probability, the
number of nodes, in the network, that must to be found to
construct the new “finger table” isO(log N), and everyone
takesO(log log N) steps w.h.p. and onlyO(1) step on average.
We want to present this new strategy stressing that the model
does not add any overhead, and that this strategy is adaptable
for all Chord-like uniforms protocol.

A. Idea and Formalization

Each nodex, in the network, creates its own “finger table”
with the support of the finger table ofx’s predecessor. The
search of eachith finger of the nodex starts from theith

finger of x’s predecessor. This scheme bounds the range of
the search, for each finger, to a distanced that is equal
to the distance betweenx and x’s predecessor. In order to
ensure that the new join improves the computational time
it is necessary to show the maximum distance between two
consecutive nodes and the maximum number of nodes within
that distance. According to theorems 1 and 2, and according to
corollary 1 we can consider that w.h.p. the maximum distance
between two consecutive node isα = 2m log N

N and that the
maximum number of nodes within an interval of sizeα is
4 log N w.h.p..

B. FindFinger

We are suggesting a new routine for the construction of
the finger table of a node joined. The finger table contains
rooms for m entries and for each entry we use a routine
FindFinger that costsO(log log N) hops.FindFingerexecutes
the procedure Chord’sFindSuccessorin a range of size at most
α.

Theorem 7:Let N > 6, the number of hops to route a
message at distanceα is O(log log N) w.h.p..

Proof: We say that after each step of the procedure
FindSuccessor[24] the distance decrease at least with a factor
of 1

2 . Then after2 log log N + 2 exponential steps on a range
at mostα the remaining interval is:

α′ =
(

2m log N

N

1
22 log log N+2

)
=

2m−2

N log N

We are investigating analyze the number of nodes that there
are intoα′, and so, the probability that the number of nodes
in α′ ≥ log log N conditioned that inα there are at most
4 log N nodes is :

4 log N∑
i=log log N

(
4 log n

i

)(
α′

α

)i(
1− α′

α

)4 log N−i
N>6
<

1
N

.

Hence after2 log log N + 2 forwarding, the distance between
the current query node and the destination will be reduced to at
mostα′, in which there are at mostlog log N nodes with high
probability. Thus, the nextloglog N forwarding steps will find
the needed node. Finally in3 log log N+2 hops the destination
is reached and so aFindFinger is ran in O(log log N) hops.

This analysis allows us to say that the new join needsm exe-
cution ofFindFingerand, so, the total cost isO(m log log N).

C. Analysis of the new join with trivial finger

Not all the fingers of a node are different as shown in
figure 5, (as an example, consider the finger table for node8
in figure 5). For each nodex, we call trivial fingers all the
fingers that falls betweenx andx’successor orx’s predecessor
and x. Since the minimal distance between two consecutive



node isβ = 2m

N2 w.h.p. (see Theorem 3), we have that, the
ith finger (risp. back finger) of a node, fori ≤ m−2 log N

2 ,
will be equal to x’ successor (risp.x) w.h.p. and then it
does not need to be searched not stored separately. Thus,
the trivial fingers are at least2m−2 log N

2 = m−2 log N w.h.p..

Fig. 5. The finger table entry for node N8.

Now we can recalculate the cost of the join operation
considering the fact that there are at leastm− 2 log N trivial
fingers w.h.p..
Since the non trivial fingers arem −m − 2 log N = 2 log N
w.h.p., for each of these we payO(log log N) messages to
find its intoFindFinger procedure, then to construct the finger
table of a new node we need, in total,O(log N log log N)
messages, w.h.p..

VI. CONCLUSIONS

2-Chord Halvedprotocol ranks into environment of the
distributed peer-to-peer protocol that offers a powerful
primitives (as Chord [24]): give a key, it determines the node
responsible for storing the keys value, and does so efficiently.
2-Chord Halveduses consistent hashing [5], [7] to assign
keys to nodes. Consistent hashing tends to balance load,
since each node receives roughly the same number of keys,
and requires relatively moderate movement of keys when
nodes join and leave the system.2-Chord Halvedevolves
the idea to stabilize the networks, i.e. allows to preserve
consistent information between fingers of nodes when there
are topological changes on the ring. This procedure not need
any (costly) periodic update (such as Chordfix.finger), and it
is ran alone when there are topological changes. Moreover,
we have presented a new join procedure on2-Chord Halved
that, w.h.p., takesO(log N log log N) messages (with respect
to O(log2 N) in Chord) and a new routing strategy that keeps
Chord performance on max path length and is moderately
better than Chord on average path length.

Acknowledgements.The authors gratefully acknowledge Al-
berto Negro and Vittorio Scarano for many helpful comments
and constructive suggestions.

REFERENCES

[1] P. Druschel and A. Rowstron, “Pastry: Scalable, distribute object lo-
cation and routing for large-scale peer-to-peer systems”. Proc. of 18th
IFIP/ACM International Conference on Distributed Systems Platforms
(Middleware ’01), Nov 2001.

[2] P. Ganesan and G. S. Manku, “Optimal Routing in Chord”. Proc. of 15th
Annual ACM-SIAM Symp. on Discrete Algorithms (SODA), Jan 2004.

[3] Petar Maymounkov and David Mazires, “Kademlia: A Peer-to-Peer Infor-
mation System Based on the XOR Metric”. Proc. of IPTPS, Cambridge,
MA, USA, Mar 2002

[4] G. Cordasco, L.Gargano, M.Hammar, A.Negro and V.Scarano, “F-Chord:
Improved Uniform Routing on Chord”. In Proc. of 11th Colloquium on
Structural Information and Communication Complexity (Sirocco), Jun
2004.

[5] D. Karger, E. Lehman, F. Leighton, M. Levine, D. Lewin and R.
Panigrahy, “Consistent hashing and random trees: Distributed caching
protocols for relieving hot spots on World Wide Web”. In Proc. of the
29th Annual ACM Symposium on Theory of Computing, May 1997.

[6] FIPS 180-1.Secure Hash Standard. U.S. Department of Commerce/
NIST, National Technical Information Service, Springfield, VA, Apr 1995

[7] D. Lewin, “Consistent hashing and random trees: Algorithms for caching
in distributed networks”. Masters thesis, Department of EECS, MIT, 1998.
Available at the MIT Library, http://thesis.mit.edu/.

[8] Napster. “http://www.napster.com/”.
[9] Gnutella. “http://www.gnutella.com/”.
[10] I. Clarke, T. Hong, S. Miller, O. Sandberg and B. Wiley. “Protecting

Free Expression Online with Feenet”. IEEE Internet Computing, 2002.
[11] M.F. Kaashoek and D.R. Krager, “Koorde: A simple degree-optimal

distributed hash table”. Proc. of the 2st International Workshop on Peer-
to-Peer Systems (IPTPS), Feb 2003.

[12] D. Malkhi, M. Naor, D. Ratajczak, “Viceroy: A Scalable and Dynamic
Emulation of the Butterfly”. Proc. 21st ACM Symposium on Principles
of Distributed Computing (PODC), Aug 2002.

[13] R. Motwani, P. Raghavan, “Randomized Algorithms”. Cambridge Uni-
versity Press, 1995.

[14] S. Ratnasamy, P. Francis, M. Handley, R. Karp, S. Shenker, “A scalable
content-addressable network”. Proc. of ACM SIGCOMM, Aug 2001.

[15] S. Ratnasamy, S. Shenker, and I. Stoica, “Routing Algorithms for DHTs:
Some Open Questions”. Proc. of 1st International Workshop on Peer-to-
Peer Systems (IPTPS), Mar 2004.

[16] S. Milgram, “The small world problem”. Psychology Today, 67(1),
1967.

[17] Jon Kleinberg, “The small-world phenomenon: An algorithmic perspec-
tive ”. Proc. 32nd ACM Symp. on Theory of Computing (STOC), 2000.

[18] L. Barriere, P. Fraigniaud, E. Kranakis, and D. Krizanc, “Efficient
routing in networks with long range contacts”. Proc. 15th Intl. Symp.
on Distributed Computing (DISC ), 2001.

[19] G. S. Manku, M. Bawa and P. Raghavan, “Symphony: Distributed
Hashing in a Small World”. Proc. 4th USENIX Symposium on Internet
Technologies and Systems (USITS), Mar 2003.

[20] M. Castro, P. Druschel, Y. C. Hu, and A. I. T. Rowstron, “Topology-
aware routing in structured peer-to-peer overlay networks”. Proc. Intl.
Workshop on Future Directions in Distrib. Computing (FuDiCo), 2003.

[21] K. P. Gummadi, R. Gummadi, S. D. Gribble, S. Ratnasamy, S. Shenker,
and I. Stoica, “The impact of DHT routing geometry on resilience and
proximity”. Proc. ACM SIGCOMM, 2003.

[22] H. Zhang, A. Goel, and R. Govindan, “Incrementally improving lookup
latency in distributed hash table systems”. In ACM SIGMETRICS, Jun
2003.

[23] G. S. Manku, “Routing networks for distributed hash tables”. Proc. 22nd
ACM Symp. on Principles of Distributed Computing (PODC), Jul 2003.

[24] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek,
F. Dabek, H. Balakrishnan, “Chord: A Scalable Peer-to-peer Lookup
Protocol for Internet Applications”. In IEEE/ACM Transactions on Net-
working, Vol. 12, No. 2, pp. 205-218, Apr 2004.

[25] B. Y. Zhao, J. Kubiatowicz, A. Joseph, “Tapestry: An infrastructure for
fault-tolerant wide-area location and routing”. Tech. Rep. UCB/CSD-01-
1141, Univ. of California at Berkeley, Computer Science Dpt, 2001.

[26] Xu, J., Kumar, A., and Yu, X., “On the Fundamental Tradeoffs between
Routing Table Size Network Diameter in Peer-to-Peer Networks”. In IEEE
Jounal on Selected Areas in Communications, vol 22, no 1, Jan 2004.


