
Logical Design with Molecular Components

Filomena de Santis and Gennaro Iaccarino

Department of Informatica e Applicazioni ”R.M. Capocelli” University of Salerno,
Via S. Allede, 84081 - Baronissi, Italy

Abstract. We propose a theoretical model to realize DNA made circuits based
on in-vitro algorithms, to perform arithmetic and logical operations. The physical
components of the resulting Arithmetic-Logic Unit are a variety of elements such
as biochemical laboratories, test tubes and human operators. The advantage of the
model is the possibility to perform arithmetic operations with huge binary numbers.

1 Introduction

As it is well known, arithmetic and logical operations are done in a conven-
tional computer by the Arithmetic-Logic Unit that often incurs in overflow or
underflow problems, due to the minimal and maximal size of the representable
numbers. We present some basic instruments to realize simple circuits based
on DNA algorithms that constitute the bio-hardware of a DNA Arithmetic-
Logic Unit overcoming overflow and underflow arithmetic limitations. Table
1 summarizes the notations and the chemical operations used in the sequel.

Table 1. Notations and Chemical Operations

Symbols

x, ¬x Generic DNA sequence and its complement
xi i repetition of x sequence
↑ x, ↓ x, l x Upper, lower and double strand x

Chemical Operations

Synthesis: Generating of DNA single strands in vitro.
Annealing: Bounding of two complementary DNA single strands
Cutting: Cutting a DNA double strand by restriction enzyme
Ligation: Pasting two DNA double strands by restriction enzyme
Polymerization: Generating a complete double strand from a portion of it
Gel Electrophoresis: Separating DNA strands by electric charges
PCR: Cloning and amplifying a particular DNA piece in solution

2 Representing Binary Strings

Each binary number can be encoded by a set of integers indicating the po-
sitions where bits are set to 1 [2]; correspondently, its biochemical represen-
tation can be done by a set of DNA double strands test tubes T [α]m...T [α]1

2 F. de Santis, G. Iaccarino.

associated to the positions where bits are set to 1 [3]. An example of DNA
double strand, representing an integer, is the following:

l(aagctct5)i

︸ ︷︷ ︸
Si

aagctt (ctgcatg5)k

︸ ︷︷ ︸
Xk

ctgcag (gaattgc5t5g5c)j

︸ ︷︷ ︸
Y i

gaattc︸ ︷︷ ︸
E0

where Si encodes the test tube containing the strand and Xk the byte in
which the molecular bit is contained; Y j represents the offset into the byte
and E0 the end of each DNA strand. All the subsequences are linked by the
restriction sites aagctt, ctgcag and gaattc, respectively for HandIII, PstI and
EcoRI enzymes. According with this schemes, the first position is encoded
with l (aagctct5)1aagctt(ctgcatg5)1ctgcag(gaattgc5t5g5c)1gaattc and so on
for the successive ones. In order to simplify the biological operations we need,
each sequence has different size and Y has to be l − 1 times longer than X,
where l is the maximum value of k. Thus, a generical value α is encoded by
the set of test tube T [α]m...T [α]1 that contain all the integers of X[α].

3 Logical and Arithmetic Operations

3.1 Logical Operations

In [5] Weiss and Basu report in-vivo experimental results which examine the
steady state behavior of cellular logic gates, with mRNA support. Here we
propose the logical design for in-vitro logic gates, using DNA algorithms. Let
T [α]m...T [α]1 and T [β]m...T [β]1 be the test tubes encoding binary strings α
and β respectively, with m<<n. The OR, α∨β, is executed synthesizing the
test tubes T [α]i and T [β]i, ∀i = 1..n, and mixing them together. The XOR,
α ⊕ β, is executed extracting all the double strands that belong exclusively
to T [α]i or T [β]i. The AND, α∧ β, is executed extracting all molecular bits
that belong contemporarily to T [α]i and T [β]i . The NOT, ¬α, is executed
synthesizing a set of test tube Tm...Ti, applying the AND operation with
T [α]m...T [α]1 and eventually extracting these sequences from the solutions.
Each operation is performed efficiently whatever is the size of the input binary
strings. Each algorithm requires a constant number of bio-steps [3], related to
the number of test tubes used in the representation of binary numbers. Thus
the expected number of bio-steps for each logical operation is O(m), where m
is the unfixed number of test tubes requested by molecular bits. If the number
of bits is fixed the complexity is O(1). Previous analyses carry out theoretical
schemes where each gate has input and output strings composed by DNA test
tubes, circuits are constituted by bio-steps, and the computational site is a
biological laboratory.

3.2 Arithmetic Operations

As it is shown in [1], we can implement addition and multiplication operations
by recursive procedures. Let α = αn...α1 and β = βn...β1 be two binary

Logical Design with Molecular Components 3

strings, and X[α] = {i : αi = 1} and X[β] = {j : βj = 1}, it results:

Add(α, β) = V al(RecursiveAdd(X[α], X[β])); (1)

where

ReacursiveAdd(Y, Z) =

X if Z = ∅
Z if Y = ∅
RecursiveAdd((Y ⊕ Z)(Y ∩ Z)+) otherwise

The multiplication procedure can be realized using progressive additions of
values, left shifted. So the multiplication operation results in:

Mul(α, β) = Add({Val (X[α] + (j − 1))}βj = 1) (2)

Subtraction and division are trivial consequences of them.

For each T [α]i and T [β]i with i = 1...m, the addition is performed as follows:
Step1. Divide molecular bits in two different test tubes T [α⊕β]i and T [α ∩ β]i.
Check whether the set T [α⊕ β]i or T [α ∩ β]i is empty. If that’s true, then
the set of test tubes T [α + β]i are equal to the not empty test tubes. Else go
to step2.
Step2. Shift on the left all the bits contained in T [α ∩ β]i, that is increase
by one position all the double strands in solution, producing (X[α]∩X[β])+.
Repeat this two simple steps until one of the set of test tube in step 1
is empty. Figure 1(a) shows a logical circuit that faithfully reproduces the
molecular algorithm steps. The procedure is realized as follows. With the
help of restriction enzyme EcoRI, cut all the double strands at their 3′ end.
Add the upper strands ↑ attgc5t5g5cgaattc with the ligation enzyme and
attend that the polymerization process forms double strands of this kind:
l (aagctct5)iaagctt(ctgcatg5)kctgcag(gaattgc5t5g5c)j+1gaattc. Thus each bit
position in T [α ∩ β]i has been shifted on the left. To reorganize the solution
in bytes, move surplus bits from a byte to the next and from a test tube to the
next [3]. Restriction enzymes and ligation are used, enzyme SalI to increase
Xk and HandIII to increase Si. At the end of this process, the surplus bits
will be: l (aagctct5)iaagctt(ctgcatg5)k+1ctgcag (gaattgc5t5g5c)1gaattc and
l (aagctct5)i+1aagctt(ctgcatg5)1ctgcag(gaattgc5t5g5c)1gaattc.
For the multiplication first calculate all shifted values of α bits, in comparison
to 1-bit∈ X[β], then sum them as in a tree data structure. Thus progressive
additions are not made with the same solutions but, concurrently with succes-
sive pairs of tubes. This procedure, besides to improve complexity, avoids that
biological errors might affect DNA in solutions. Figure 1(b) shows a simple
multiplier circuit. As shown in [3], the expected number of bio-steps, for the
addition, is O(m·log2 n) and becomes O(log2 n), if the number of bits is finite
and limited to one test tube. Multiplication complexity is O(m · (log2 n)2);
it depends on the logarithmic number of addition in the tree. Also for multi-
plication it became O(log2 n)2) in the best case. Arithmetic operations can
be described as conventional circuits.

4 F. de Santis, G. Iaccarino.

(a) (b)

Fig. 1. Logical design of molecular circuits. (a) Molecular Adder: dark gates rep-
resent not DNA made logical selections. (b) Molecular Multiplier.

4 Floating Point Arithmetic

The DNA representation of floating numbers we propose is comparable to
the IEEE 754 [4]. Using the DNA representation presented above, we can
divide the set of test tubes as follow: T [α]signT [α]expT [α]m...T [α]1, where
T [α]sign encodes the sign of α. T [α]exp the molecular bits for the exponent
and T [α]m...T [α]1 the mantissa f . As it happens in IEEE 754 standard, we
need to choose a set of DNA strings to represent a few of mathematical sig-
nificative values (0,±∞ and NaN) [3].
For the addition, compare α and β exponents (by gel electrophoreses) and
increase the mantissa of the greater of |expα − expβ | positions. The result
is the left shift of the mantissa toward greatest positions. Perform integer
addition with α and β mantissas and then normalize the result [3] comparing
the new most significant bit with the old, and shifting it if smaller.
Multiplication is realized by adding α and β exponents and multiplying
their mantissas (integer multiplication). At the end of this process compare
T [α]sign and T [β]sign and determine resulting sign as shown in Table 2. The

Table 2. Sign Choice

Choice T [α · β]sign Sign

T [α]sign = T [β]sign = φ T [α · β]sign = φ Positive
T [α]sign = T [β]sign 6= φ T [α · β]sign = φ Positive
T [α]sign 6= T [β]sign T [α · β]sign 6= φ Negative

expected bio-steps for the addition depend on the bio-steps in each computa-
tional step. Only one gel electrophoresis is required to choose the exponent,
so the complexity is O(1). The integer subtraction requires O(log2 q) [3] and

Logical Design with Molecular Components 5

the mantissa left shift O(q), where q is the number of bits in the representa-
tion of the exponent. The integer addition takes O(m · log2 n) and the final
gel electrophoresis and the increment O(log2 q). In conclusion, the expected
bio-steps are: O(1) + O(log2 q) + O(q) + O(m · log2 n) that is O(m · log2 n).
They become O(log2 n), if the bits of the mantissa are fixed and limited
to one test tube. The expected bio-steps for the multiplication depends on
the integer addition and multiplication: O(log2 q) + O(m · (log2 n)2) namely
O(m·(log2 n)2). They become O(log2 n)2, if the bits of the mantissa are fixed.
Logical circuits for floating point adder and multiplier are respectively shown
in Figure 2.

(a) (b)

Fig. 2. Floating Point Adder (a) and Multiplier (b). Dark sections represent logical
selections, not implemented with Dna molecules.

5 Conclusion

The purpose of this paper was to introduce a concrete approach for the logical
design of a real DNA-ALU, defeating limitations of results presented in [1],
such as the fixed number of bits available for the user, and in [5], such as
difficulties in building real biological circuits due to the in-vivo nature of its
experimental basis.

References

1. Barua R. (2002) Binary Arithmetic for DNA Computer, 8th International work-
shop on DNA-Based Computers: Dna Computing, pp. 124-132

2. Biswas S. (1998) Computing with Bio-Molecules. Theory and Experiment, Ed
G. Paun

3. de Santis F., Iaccarino G. (2004) A DNA Arithmetic Logic Unit, WSEAS Trans-
actions on Biology and Biomedicine, vol. 1, October 2004, pp. 436-440

4. Kahan W. (1996) IEEE Standard 754 for Binary Floating Point Arithmetic,
Lecture Notes on status of IEEE 754, University of California Berkeley CA.

5. Weiss R., Basu S. (2002) The Device Physics of Cellular Logic Gates, First
Workshop on Non-Silicon Computing, Cambridge, Mass.

