Journal of Science Education and Technology, Vol. 8, No. 1, 1999

WEBSLIDE: A “Virtual” Slide Projector Based on

World Wide Web!

Maria Barra,? Salvatore Ferrandino,? and Vittorio Scarano

4

We present here the design key concepts of WEBSLIDE, a software project whose objective
is to provide a simple, cheap and efficient solution for showing slides during lessons in com-
puter labs. In fact, WEBSLIDE allows the video monitors of several client machines (the “sTU-
DENTS”) to be synchronously updated by the actions of a particular client machine, called
the “INSTRUCTOR.” The system is based on the World Wide Web and the software compo-
nents of WEBSLIDE mainly consists in a WWW server, browsers and small CGI-BIN scripts.
What makes WEBSLIDE particularly appealing for small educational institutions is that
WEBSLIDE is built with “off the shelf” products: it does not involve using a specifically de-
signed program but any Netscape browser, one of the most popular browsers available on
the market, is sufficient. Another possible use is to use our system to implement “guided
automatic tours” through several pages or Intranets internal news bulletins: the company

Web server can broadcast to all employees relevant information on their browser.

KEY WORDS: Intranet applications; CGI programming; synchronous World Wide Web navigation.

INTRODUCTION

Teaching is a challenging activity: The instructor
must communicate with the students in the best pos-
sible way. Often, it means to use technical devices to
make the lesson more clear, more appealing, more
enjoyable, that is, in a word (or rather two!) more
fruitful.

Among the tools available to instructors, the pro-
jectors are, maybe, the more widely used: being able
to show transparencies or (better) the video monitor

'A Ereliminary version of this paper has been presented at the
14" International Conference on Advanced Science and Tech-
nology (ICAST 98), Chicago, April 3-5, 1998.

2Dipartimento di Informatica ed Applicazioni “R. M. Capocelli,”
Universita di Salerno, 84081 Baronissi (SA), Italy. E-mail:
marbar@dia.unisa.it

3XCom Wide Communication, Via E.De Filippis 107/A—P.co
Luciano, 84013 Cava De’ Tirreni (SA), Italy. E-mail: salfer
(@xcom.it

4Dipartimento di Informatica ed Applicazioni, “R. M. Capocelli,”
Universita. di Salerno, 84081 Baronissi (SA), Italy. E-mail: vit-
sca@dia.unisa.it

45

of a Personal Computer is an important teaching aid.
With the “Personal Computer Revolution” of the 80s,
instructors and schools are actively using computers
to prepare the so-called “courseware.”

Unfortunately, often small schools and educa-
tional institutions can offer several computer labs to
their students (maybe even a large number) but have
fewer classrooms with projectors, if none at all.

Our system WEBSLIDE is a software solution to
such a problem: how to use a computer lab also for
teaching by providing a tool that allows to synchro-
nously broadcast on the students video monitors the
slides chosen by the instructor. The system does not
require specialized hardware other than a (general-
purpose) local area network connecting the PCs and
a World Wide Web server and clients.

What we present here are the key concepts of
the design of WEBSLIDE, which can reach only some
of the capabilities shown in (Parnes et al., 1996; Woo
and Rees, 1994; Yeh et al, 1996) but at (virtually)
no cost: The design is simple, the mechanisms are
available on a large subset of the browsers actually
used, and the implementation is easy.

1059-0145/99/0300-0045$16.00/0 © 1999 Plenum Publishing Corporation

46

WEBSLIDE design offers the synchronization be-
tween instructor and students with a “minimalist”
philosophy: Try to build a system that uses only “off-
the-shelf” products that are currently available on
the World Wide Web.

A prototype of WEBSLIDE has been realized in
C and in PERL under the Unix operating system (for
the server) using an Apache Web server and it has
proven itself as a very efficient and cost-effective so-
lution with low resources utilization.

Organization of the Paper. In the next section, we
describe the World Wide Web and its application to
the educational setting and then describe the Hy-
perText Transfer Protocol (HTTP) and its limitations
for the problem and briefly introduce some of the
tools used by WEBSLIDE. Then, we show the key con-
cepts of the design to such an extent that shows the
reader the capabilities reached. We conclude the sec-
tion (and the paper) with some extensions and future
work.

THE WORLD WIDE WEB

The World Wide Web (WWW) (Berners-Lee,
1991); Berners-Lee et al., 1992), developed in 1989
at CERN as a means of sharing information through
the organization, has grown up as an information re-
trieval system on the Internet that can be considered
the first real global hypermedia network. It was con-
ceived as an environment where information from
any source can be accessed in a consistent and simple
way from any place in the network. Since 1989,
WWW’s growth has been exponentially fast, by
reaching tens of millions of users through the whole
Internet.

WWW and Education

Although originally developed to facilitate infor-
mation sharing, the World Wide Web has large po-
tentials as an educational support, especially for
distance learning. In fact, several educational systems
based on WWW have been developed in the recent
past and the educational use of WWW has been a
topic of several papers (Dwyer et al., 1995; Ibrahim
and Franklin, 1995).

In order to fully exploit WWW potentiality in
the educational field, the characteristics of the model
show some weaknesses. In fact, first of all, the state-

Barra, Ferrandino, and Scarano

less characteristic of HTTP makes impossible that
server response is aware of user’s behavior so that it
can take into account the level of knowledge and, as
a consequence, provide the user with documents that
she can read, given her background/capacity. But, the
major drawback for using the WWW as an educa-
tional system lies in the architecture itself: connec-
tions are always one-to-one (client-server) and
sharing of information among group of clients is not
allowed. This structure must be compared to what
happens in “ordinary” classrooms: interaction is
mainly between the teacher and students and the lat-
ter share what the teacher is saying or showing.

The aspect of the “ordinary” classroom that lies
in the interactions between students and teacher and
among students themselves has received a fair
amount of attention. In fact, current research is ex-
ploring the potentialities of “Shared Workgroup” on
WWW through several systems (Bentley and Horst-
mann, 1995; Chiu and Griffin, 1995; Gruber, 1995;
MacArthur, Roscheisen, and Winograd, 1995; Vird-
hagriswaran et al., 1995).

Far less attention, if compared with the previous
one, has received the aspect of the navigation syn-
chronization between the instructor and the students.
Some encouraging results have been recently pre-
sented in this field in (Parnes et al., 1996; Woo and
Rees, 1994; Yeh et al., 1996).

HTTP and State Information

HyperText Transfer Protocol (HTTP) is a very
simple Internet protocol, similar to the File Transfer
Protocol (FTP, RFC 959) and Network News Trans-
fer Protocol (NNTPE, RFC 977). HyperText Transfer
Protocol is a fast and efficient protocol for searching
and retrieving information from a server: the client
makes a TCP-IP connection to the host by using do-
main name (or IP number) and the port number (de-
fault port is 80). Then the client sends a request
document, consisting of lines (CR-LF terminated) of
ASCII characters. The server sends back to the client
its answer: the document required or (if that is the
case) an error message.

Because of efficiency requirements, HTTP 1.0
was designed as a stateless protocol, that is the server
does not keep any state on behalf of the client. In
this way, HTTP servers can handle a large number of
requests at the same time.

WEBSLIDE: A “Virtual” Slide Projector Based on WWW

Although very efficient, this design requirement
is limiting many possible activities that the server can
perform on request. Examples are the ability of ana-
lyze the efficacy of cross references within the same
Web site, build statistical profiles of users, to adapt
its behavior on the basis of previous interactions and,
last but not least, the ability to synchronize the be-
havior of several remote clients.

Solutions to these limitations fall in two catego-
ries: Those proposing an extension to the HTTP 1.0
protocol and those devoted to design a new protocol.
In the first category, we see, for example, an exten-
sion to the HTTP 1.0 protocol (Kristol, 1996) which
is a refinement of the “Cookie” solution proposed
by Netscape (Netscape, 1995). On a different direc-
tion lies the effort to overcome this limitation in the
next future by designing HTTP 1.1 (Fielding et al,
1997), where it is allowed to use the same TCP/IP
connection to perform multiple operations.

Both kind of solutions offer advantages but also
suffer from some limitations. New HTTP 1.1 is still
being designed and so are the browsers that can take
advantage of the multiple operations capability.

On the other side, the “cookie” extensions pro-
posed suffer from the drawback that they can be used
on specific (also if widespread) browsers like Netscape
2.0 and following versions (Netscape, 1995). Also,
widespread complaints over similar mechanisms that
can be used to maintain surveillance of users accessing
a Web server are reported over the Internet and taken
into account by several authors (Hallam-Baker and D.
Connolly, 1996).

CGI-BIN Program

Common Gateway Interface (CGI) is a standard
for interaction between a WWW server and external
application. A Common Gateway Interface program
(often called “CGI-BIN script”) is an executable pro-
gram residing on the server whose execution can be
triggered by a remote client. CGI-BIN scripts get input
data from the client either by encoding data in the
URL (Uniform Resource Locator) (often said URL-
encoded) as a string prefixed by ‘?” and separated by
‘+’ or (when input data can be very large, for exam-
ple) On standard input. In the latter case, the client
does an HTTP POST or a PUT operation and the data
is attached to the request itself. Output is sent back
to the remote client, and, consequently, it is often in
HTML format.

47

Netscape Server Push—Client Pull

In an effort to mitigate the lack of dynamicity
that is currently offered by HTTP protocol and by the
structure of clients, Netscape has developed and in-
tegrated in their browser two mechanisms that can
be used to implement dynamic documents.

The characteristics of the two mechanisms, “cli-
ent pull” and “server push,” are described in
Netscape (1996). The “client pull” mechanism is
when the server sends information (embedded in a
HTML page) that indicates the client that it should
“load” something (possibly the same document)
within a specified number of seconds. A new con-
nection between the client and (possibly the same)
server is, then, opened and the action performed.
This is done by using a <META> tag in HTML which
allows to specify information to be included in the
HTTP header. In this case, a line in the file such as
<META HTTP-EQUIV=‘“Refresh” CONTENT
=10;> asks the client to go ask again the same URL
at the server in 10 seconds. It is also specify a dif-
ferent URL to be fetched at the deadline.

On the opposite side lies the other mechanism:
the “server push.” In response to a GET request, the
server sends its data enclosed in a experimental
MIME type/subtype, called multipart/x-mixed-re-
place, that allow to send several documents “at
once.”

Documents are separated by “boundaries” (i.e.,
strings that do not appear in the document being
sent, prefixed by double hyphen) as specified in
“standard” multipart Mime types (Borenstein and
Freed, 1993). There are part boundaries that enclose
an object that can be treated by the browser and a
final boundary that indicates that the transmission is
over. When the first document is completely received
by the browser (i.e., when the browser receives a part
boundary), it shows the document but, in the mean-
time, it is receiving the second document. When the
second document is also completely received, then it
replaces the previous one on the browser, and so on.
The TCP connection between client and server is
kept open by the server and the client is waiting on
the other side, that either new document are trans-
mitted or the final boundary is sent by the server.
The connection may, then, be kept always open by
a server that wants to be able to send and update
“synchronously” a document to a client. The server
push mechanism has been used as a simple way to

48

obtain animation: The server push can, in fact, be
used for pushing images in a tag.

Our idea is mainly to use server push (and to a
lesser extent, client pull) to obtain a synchronous be-
havior between several clients and a server.

THE WEBSLIDE

In this section we describe WEBSLIDE'S struc-
ture and show how it can be easily implemented. Fi-
nally, some possible scenario where WEBSLIDE can
be useful are shown.

The Principle

WEBSLIDE is built on some assumptions: First,
CGI-BIN scripts are necessary to allow communica-
tions between clients connected at the same server.
Then, clients have to recognize documents that are
“server pushed” through the same TCP connection.
Third, some interprocess communication is available
on the server.

In the sequel, we call INSTRUCTOR and STUDENTS
several clients connected at the same server: the be-
havior of WEBSLIDE is such to guarantee that local
links followed by the INSTRUCTOR are shown on STU-
DENTS browser.> Then, the synchronization process
can be described in several phases defined as follows:

1. Setting up the classroom. The INSTRUCTOR
sets a “class” by providing a topic and by
specifying other optional information such
as, for example, setting a maximum number
of STUDENTS that can be “attending” the lec-
ture or setting the start time.

2. Enrollment of STUDENTS. Each STUDENT can
check the available classes (through a par-
ticular page available on the server) and en-
roll in one of the classes. It is also given the
chance of getting the list of attendants.

3. The lesson. The INSTRUCTOR starts the lesson
by following links through previously prepared
slides in HTML. Each page that is shown on
her browser is synchronously shown on STU-
DENTS’ screen and she can interact with her
STUDENTS through audio-live connections or
through more conventional means.

SOur distinction among clients is similar to the master/slave clients
in Yeh et al., 1996.

Barra, Ferrandino, and Scarano

4. End of the lesson. The INSTRUCTOR follows
an “end of the lesson” link that closes the
TCP connections toward STUDENTS.

The Structure

We describe here WEBSLIDE'S structure by
showing the actions that must be performed at each
of the phases previously described and how that can
be easily accomplished by using several intercommu-
nicating CGI-BIN scripts.

State Info Mechanism

First of all, let us notice that a small amount of
information has to be exchanged between the server
and the INSTRUCTOR and between the server and the
STUDENTS. In fact, for example, when the INSTRUC-
TOR sets up the classroom it must “receive” the Class
Identifier (CID), that has to be used in every future
interaction with the server. Given the stateless prop-
erty of HTTP the server “memory” is explicitly imple-
mented® through the “parameter passing” mechanism
(as in Ferrandino et al., 1996).

This solution needs a simple CGI-BIN script
which takes as input (URL-encoded) a filename and
some “state” information. The script, when is exe-
cuted, returns the required document taking care to
substitute any “internal” link (within a certain realm,
that can also be the server itself) to a file called
foo.html with a call to the script with first parameter
foo.html and the instance of the state as it is known
by the script itself at that time as other parameters.
In Ferrandino et al. (1996), the mechanism is used
to implement adaptive response from an HTTP server
depending upon previous interactions with the same
user. Here, the mechanism can be used two times:

* When the INSTRUCTOR sets up the classroom,
it needs the CID so that any future interac-
tion with its STUDENTS can be managed by
the server. In this case, the CGI-BIN script
modifies the links in such a way to “embed”
the CID as second parameter.

SGiven that we are using Netscape browser, it can also be imple-
mented by using the well-known “Cookies” mechanism
(Netscape, 1995), but some criticism raised in (Hallam-Baker and
D. Connolly, 1996) about privacy issues suggested us to choose
the explicit mechanism.

WEBSLIDE: A “Virtual” Slide Projector Based on WWW

e When the STUDENT asks for a list of available
classes, she needs to follow a link that is a
CGI-BIN script with parameter the CIDs for
every available class. When the STUDENT
chooses the class, she is enrolled into the
class shown by the CID.

The Phases

Let us describe how each phase can be imple-
mented by using “off the shelf” software products.
The idea is as follows: the server has several proc-
esses (one for each student) that take care to push
toward the STUDENTS the page as soon as the IN-
STRUCTOR requests it. These processes keep the TCP
connection open and, at the end of each file, send a
“part boundary” to signal the STUDENTS that it can
be shown and more is coming.

First of all, let us see what has to be done in
the first phase, when the INSTRUCTOR sets up the
classroom. The INSTRUCTOR needs to interact with
the server to establish if there is “enough room” for
her classroom. In fact, this phase could be critical
since the WEBSLIDE mechanism is based on spawn-
ing a certain number of child processes that could
easily overload the server. Then it is highly suggested
that access to the first phase is provided with some
security measure (a simple password mechanism
might be enough).

The (would-be) INSTRUCTOR fills up a form
where its requests for a class are taken (title of the
class, maximum attendance, first page to be shown,
etc.) and, in response, the server returns a starting
document with the information about CID embed-
ded into the local links with calls to a CGI-BIN script,
called MONITOR. This script takes care of receiving
the requests from the INSTRUCTOR and communi-
cate with processes that take care of the STUDENTS
(more details follow when we describe Phase 3).
The MONITOR also takes care of inserting into the
document a link to the “End of the lesson” which
is a call to the MONITOR itself with null first pa-
rameters.

Moreover, the server takes care of creating a
data structure (either in shared memory or on the
disk) for the enrollments (the “room” for the STU-
DENTS) and also to update a page of “available
classes” for consultation. A scheme of the actions
taken in Phase 1 is given in Fig. 1.

49

In Phase 2, each (would-be) STUDENT asks the
server the “available classes page” where each link,
if followed, is a call to a script, called the TUTOR,
that takes care of the student enrollment and of
all the future interactions with the class. First, the
TUTOR updates the data structure used to repre-
sent the “room” by writing its CID and then send
back a “Please Wait” page starting a “server push”
on the STUDENT. At this point, being enrolled in
that class, when the lesson starts, the TUTOR will
be notified by the MONITOR (executed by the IN-
STRUCTOR) that it has to read a given page and
send it back to the STUDENT it is in charge of. A
scheme of the actions taken in phases 2 is given
in Fig. 2.

Now, let us see what happens during Phase 3
(the scheme is available on Fig. 3). The INSTRUCTOR
chooses links as desired. Links were changed in
phase 2 so that they activate the MONITOR that takes
two steps:

» First, it sends back the page required, taking
care of changing the internal links in such a
way to bring the CID as a parameter.

e Then, for each STUDENT it communicates
with its TUTOR by sending the name of the
file to be pushed toward its STUDENT. The
TUTOR takes also care to include a “part
boundary” of the multipart/x-mixed-replace
MIME type so that the STUDENT browser will
show the page as soon as it is completed,
while keeping the TCP connection open.

Phase 4 is much simpler: If the MONITOR is
called with a null first parameter then it knows that
it is the end of the lesson, and acts as a consequence.
The TUTORS are asked to send the “end boundary,”
possibly after a “Come back soon” page to each stu-
dent, and the MONITOR is also in charge of “cleaning
up” the room (deleting shared memory or files, up-
dating the list of available classes, etc.).

Applications and Extensions

We examine here, a few other applications
when WEBSLIDE can be useful. First of all, it can
be used also like automatic slide changing on sev-
eral monitors that are in a museum or similar. In
fact, the system can be made “automatically chang-
ing” slides: It is enough to use a client-pull mecha-
nism: the INSTRUCTOR, in this case, is required only

50

Barra, Ferrandino, and Scarano

[INSTRUCTOR Server
Asks the server for allocation of a “room”.
N\«
Allocates the “room” (if available) and returns
a starting page with Class ID (CID) embedded
within the links.
bd
Waits for the start time.
Instructor
1
4
Set-up script
Sets up the 7
Classroom
@ { WWW server
Server

Fig. 1. The scheme for Phase 1 (Setting up the classroom) and the corresponding action diagram.

to start a sequence of pages that are circularly
linked via a <META HTTP-EQUIV=‘“Refresh”
CONTENT=10; URL=http://foo.bar/pageyy.html>
HTML tag. The STUDENTS will simply follow the
flow of pages on their screen. The INSTRUCTOR can
also insert at “run-time” new pages or update the
old ones.

Such tours have been very useful in avoiding any
cognitive overhead and disorientation. Work in this
area goes back to almost 30 years (as Bush’s trails
(Bush, 1967)) but also to recent papers (see Trigg’s
guided tours (Trigg, 1998) and “Footstep” mecha-
nism (Nicol et al., 1995).

Another useful application could be as an infor-
mation broadcast on an Intranet: think of all the em-
ployees having a browser open on the “What’s new
today” information of the company they are working
with. Updated information is sent immediately to all
the employees.

Some extensions are possible in the design and
can be easily included in the prototype. For example,
it is possible to allocate a classroom “off-line” and
not require the teacher to wait “on-line” for the les-
son to start. It can be done by allowing to create a
CID and then when the INSTRUCTOR follows a pass-
word-protected link the lesson starts.

WEBSLIDE: A “Virtual” Slide Projector Based on WWW

51

[Server

| sTUDENT]

A student asks for available classes to the
server.

<

Server sends back a page with links to starting
points and CIDs embedded in the links. N

A student follows one of the links and en-
rolls herself into the class.

vl

PID for that student.

Server starts a “server-push” process (the TUTOR)
that communicates with the student and “enrolls”
the student in the class by taking note of TUTOR’s

N

. repeated for all STUDENTS.

Student
Server push
1
3
Tutor
Classroom 2
(Tutors PID)
WWW server
Server

Fig. 2. The scheme for Phase 2 (Enrollment of STUDENTS) and the corresponding action diagram.

Another important extension, that is planned
next, extends the WEBSLIDE to the whole WWW. In
the current design, the TUTORS receive the name of
the file to be sent that (in our assumptions) is as-
sumed to be local to the server. In a different sce-
nario, the server could take care to act as a proxy
by downloading remote documents (as required by
the INSTRUCTOR) and then sending its filename to
the TUTORS. This could easily increase the effective-

ness of a lesson: the teacher can include HTML pages
everywhere in the Web.

REFERENCES

Bentley, R., and Horstmann, T. (1995). Supporting collaborative in-
formation sharing with the World Wide Web: The BSCW Shared
Workspace system. Workshop on World Wide Web and Col-

52

Barra, Ferrandino, and Scarano

[INSTRUCTOR Server

STUDENT]

Follows one of the links
(probably something like
“Next” link) which “brings”
embedded information for
the server like the CID.

v

Returns the required document,
modifying its links so that they
bring embedded the CID.

Gets the file that is going to
be shown to STUDENTs

Writes the filename of document to
a shared memory or file and make
the TUTORs send the document to
the whole class.

N

Each student receives the
new document that is shown
on the screen, while the
TCP connection is left open.

. repeated for all links followed by the INSTRUCTOR.

Instructor
Student Student
Server push Server push
b
S5 - Send page 5 - Send page 5 - Send page

Classroom
{Tutors PID;

4 - Signal thé Tptors- - -4

C

WWW server '

Server

Fig. 3. The scheme for Phase 3 (the lesson) and the corresponding action diagram.

laboration, Massachusetts Institute of Technology, Cambridge,
Massachusetts.
Berners-Lee, T (1991). World Wide Web Initiative. WWW Home
Page. [http://info.cern.ch/hypertext/WWW/TheProject.html]
Berners-Lee, T, Cailliau, R., and Groff, J. E (1992). The world
wide web, Computer Networks and ISDN Systems, 25: 454-459.
Borenstein, N., and Freed, N. (1993). MIME (Multipurpose Internet
Mail Extensions). Part One: Mechanisms for Specifying and De-

scribing the Format of Internet Message Bodies, RFC 1521,
Sept. 1993.
Bush, V. (1945). As we may think, The Atlantic Monthly, July.
Chiu, D. M., and Griffin, D. (1995). Workgroup Web Forum: Tools
and Applications for WWW-Based Group Collaboration. Work-
shop on World Wide Web and Collaboration, Massachusetts
Institute of Technology, Cambridge, Massachusetts.

WEBSLIDE: A “Virtual” Slide Projector Based on WWW

Dwyer, D., Barbieri, K., and Doerr, H. M. (1995). Creating a Vir-
tual Classroom for Interactive Education on the Web. Proc. of
WWW 95, Third International Conference on World Wide
Web.

Ferrandino, S., Negro, A., and Scarano, V. (1996). CHEOPS:
Adaptive Hypermedia on World Wide Web. Proceedings of the
European Workshop on Interactive Distributed Multimedia
Systems and Telecommunicazion Services (IDMS °97), 10-12
Sett. 1997. Ed. Springer-Verlag (LNCS).

Hallam-Baker, P. M., and Connolly, D. (1996). Session Identifica-
tion URI. W3C Working Draft WD-session-id-960221.
[http://www.w3.org/pub/WWW/TR/WD-session-id.html]

Fielding, R., Frystyck, H., and Berners-Lee, T (1997). Hypertext
Transfer Protocol, urre 1.1. HTTP Working Group Internet
Draft.

Gruber, T. (1995). Collaborating around Shared Content on the
WWW. Workshop on World Wide Web and Collaboration,
Massachusetts Institute of Technology, Cambridge, Massachu-
setts.

Ibrahim, B., and Franklin, S. D. (1995). Advanced Educational Uses
of the World Wide Web. Proc. of WWWO5, 3rd International
Conference on World Wide Web.

Kristol, D. K. (1996). Proposed HTTP State Management Mechanism.
HTTP Working Group Internet Draft (2/22/96).

LaLiberte, D., and Bravermann, A. (1995). A Protocol for Scalable
Public Group and Public Annotations. Workshop on World
‘Wide Web and Collaboration, Massachusetts Institute of Tech-
nology, Cambridge, Massachusetts.

MacArthur, K. Collaboration, Knowledge representation and Auto-
matability. [http://www.w3. org/pub/WWW/Collaboration]
Netscape Communications Corporation. (1995). Persistent Client

State HTTP Cookies.

Netscape Communications Corporation. (1996). An Exploration of

Dynamic Documents.

53

NCSA Mosaic Project (1994). NCSA Mosaic Home Page.
[http://www.ncsa.uiuc.edu/SDG/Software/Mosaic/NCSAMosa
icHome.html]

Nicol, D., Smeaton, C., and Falconer Slate, A. (1995). Footsteps:
Trail-Blazing the Web. Proc. of WWW 95, Third Internazional
Conference on World Wide Web. [http://www.igd.thg.de/www/
www95/proceedings/papers/60/footsteps.html]

Nielsen, J. (1990). Hypertext and Hypermedia. Academic Press Ltd.

Parnes, P, Shefstrom, S., and Synnes, K. (1996). WebDesk: The
Tele-Conferencing Services of MATES. ERCIM Workshop on
CSCW and the Web, Feb. 1996. [http:/mates.cdt.luth.se/
papers/SMAC/Webdesk_SMAC.html]

Roscheisen, M., and Winograd, T. (1995). Generalized Annotations
for Shared Commenting, Content Rating, and Other Collabora-
tive Usage. Workshop on World Wide Web and Collaboration,
Massachusetts Institute of Technology, Cambridge, Massachu-
setts.

Trigg, R. H. (1988). Guided Tours and tabletops: Tools for commu-
nicating in a hypertext environment. ACM Transactions on Of-
fice Information Systems 6,4 (October).

Virdhagriswaran, S., Webb, M., and Mallatt, J. (1995). Shared In-
formation Space: An Interactive, Collaborative System Enable-
ment Perspective. Workshop on World Wide Web and
Collaboration, Massachusetts Institute of Technology, Cam-
bridge, Massachusetts.

Woo, T K., and Rees, W. J. (1994). A Synchronous Collaboration
Tool for World-Wide Web. Proc. of the 2nd World Wide Con-
ference [http://www.ncsa.uiuc.edu/SDG/IT94/Proceedings/
CSCW/rees/SynColTol.html]

Yeh, P, Chen, B., Lai, M., and Yuan, S. (1996). Synchronous Navi-
gation Control for Distance Learning on the Web. Proc. of 5th
International World Wide Web Conference.

